
Adapting Scheme-Like Macros to a C-Like Language

Kevin Atkinson Matthew Flatt
University of Utah, School of Computing

{kevina,mflatt}@cs.utah.edu

Abstract
ZL is a C++-compatible language in which high-level constructs,
such as classes, are defined using macros over a C-like core. ZL’s
parser and macro expander are similar to that of Scheme. Unlike
Scheme, however, ZL must deal with C’s richer syntax. Specif-
ically, support for context-sensitive parsing and multiple syntac-
tic categories (expressions, statements, types, etc.) leads to novel
strategies for parsing and macro expansion. In this paper we de-
scribe ZL’s approach to parsing and macros.

1. Introduction
C is a simple language that gives the user considerable control over
how source code maps to machine code. For example, structures are
guaranteed to be laid out in a particular way, dynamic memory is
not allocated unless it is asked for, all function calls are explicit, and
the only functions created are the ones that are explicitly defined.
For this reason, most low-level system code is written in C. Nev-
ertheless programmers want to use high-level language constructs
for various reasons, and such use generally relinquishes low-level
control. For example, C++ does not guarantee a particular layout of
objects. This lack of control can cause a number of problems, in-
cluding compatibility problems between different releases of soft-
ware and between different compilers.

A programmer can regain control over higher-level language
feature implementation through an extensible compiler. To provide
such extensibility, macros for C are an ideal choice. Macros for C
let a programmer build higher-level constructs from a small core,
rather than forcing a programmer to accept a built-in implemen-
tation. Moreover, since macros elevate language extensions to the
level of a library, individual advanced language features are only
active when loaded.

A simple macro system, such as the C preprocessor, is not
adequate for this purpose, nor is any macro system that acts simply
as a preprocessor. Rather, the macro system must be an integral
part of the language that can do more than rearrange syntax. In
addition, the C base language must be extended to support the
necessary primitives for implementing higher-level features. ZL,
our new C and C++ compatible systems programming language in
development, addresses both of these needs.

One target application of ZL explored in an earlier paper [4] is
to help provide stability under software evolution. In particular, a
programmer can use the ZL macro system to mitigate the problems
of fragile ABIs (Application Binary Interfaces) due to software
changes and incompatible ABIs due to compiler changes. This
control is possible because ZL allows the programmer to control
how an API (Application Programmer Interface) maps to an ABI.

This paper focuses on the ZL parser and macro expander. For
relatively simple language extensions, ZL supports pattern-based
macros similar to Scheme’s syntax-rules [26]. In addition, ZL
supports parser extensions that change the tokenization (roughly)

of the input source, so that macro uses need not have the restricted
form that Scheme’s macro system imposes. Even with such exten-
sions, pattern-based macros are limited. Therefore, in the same way
that Scheme provides procedural macros via syntax-case [14],
ZL supports procedural macros. ZL’s API for procedural macros in-
cludes support for reflective tasks such as partial expansion, getting
the value of a macro parameter, or determining whether a symbol
is currently defined.

Our contribution in this paper is to demonstrate the adaptation
of Scheme-style, hygienic macros to C-style syntax. Dealing with
C’s idiosyncratic syntax introduces complexities that are not solved
by simply converting the original text into an S-expression interme-
diate format. Instead, parsing of raw text must be interleaved with
the expansion process, and hygiene rules must be adapted carefully
to actions such as accessing structure members.

The rest of this paper is organized as follows. Section 2 gives an
overview of ZL parser and expander. Section 3 introduces macros
and give details of the ZL parser. Sections 4 and 5 go into more
detail on the macro transformer and give several example macros.
Section 6 provides details of the macro implementation, and Sec-
tion 7 discusses the status of our ZL implementation.

2. Parsing and Expanding
To deal with C’s idiosyncratic syntax while also allowing the syntax
to be extensible, ZL does not parse a program in a single pass.
Instead, it uses an iterative-deepening approach to parsing. The
program is first separated into a list of partly parsed declarations by
a Packrat [18, 19] parser that effectively groups tokens at the level
of declarations, statements, grouping curly braces, and parentheses.
Each declaration is then parsed. As it is being parsed and macros
are expanded, sub-parts, such as code between grouping characters,
are further separated.

ZL’s iterative-deepening strategy is needed because ZL does not
initially know how to parse any part of the syntax involved with a
macro. When ZL encounters something that looks like a function
call, such as f(x + 2, y), it does not know if it is a true function
call or a macro use. If it is a macro use, the arguments could be
expressions, statements, or arbitrary syntax fragments, depending
on the context in which they appear in the expansion. Similarly, ZL
cannot directly parse the body of a macro declaration, as it does not
know the context in which the macro will ultimately be used.

More precisely, the ZL parsing process involves three inter-
twined phases. In the first phase raw text, such as (x+2), is parsed.
Raw text is converted into an intermediate form known as a syntax
object, but which can still have raw-text components. (Through-
out this paper we show syntax objects as S-expressions, such as
("()" "x+2").) In the second phase, the syntax object is ex-
panded as necessary and transformed into other syntax objects by
expanding macros until a fixed point is reached. In the third phase,
the fully expanded syntax object is compiled into an AST.

inline int f() {int x = 10; return x;}
int main() {return f();}

↓PARSE↓
(@ (stmt inline int f ("()" "") ("{}" "int x = 10; return x;")

(stmt int main ("()" "") ("{}" "return f();")))

↓EXPAND & COMPILE↓�

�

	

TOP-LEVEL ENVIRONMENT
(stmt inline int f ...)

↓EXPAND↓
(fun f (.) (int) :inline ("{}" "int x = 10; return x;"})

↓COMPILE↓�

�

	

FUN
inline true
id f
type int

body

("{}" "int x = 10; return x;")

↓EXPAND & REPARSE↓
(block (stmt int x = 10) (return (exp x)))

↓COMPILE↓�

�

	

BLOCK
(stmt int x = 10))

↓EXPAND↓
(var x (int) (exp 10))

↓COMPILE↓�

�
	VAR

...

(return (exp x))

↓...↓

(stmt int main ...)

↓...↓

Figure 1. How ZL compiles a simple program. The body of f is reparsed and expanded as it is being compiled.

Figure 1 demonstrates ZL’s parsing and expansion process. The
top box contains a simple program as raw text, which is first
parsed. The result is a syntax list (internally represented as a @)
of stmt’s where each stmt is essentially a list of tokens, as shown
in the second box. Each statement is then expanded and compiled
in turn, and is added to the top-level environment (which can be
thought of as an AST node). The third box in the figure shows
how this is done, which requires recursive parsing and expansion.
The first stmt is compiled into the fun f, while the body of
the function is left unparsed. Next, fun is compiled into an AST
(shown as a rounded rectangle). During the compilation, the body
is expanded. Since it is raw text, this process involves parsing
it further, which results in a block. Parsing the block involves
expanding and compiling the sub-parts. Eventually, all of the sub-
parts are expanded and compiled, and the fully parsed AST is
added to the top-level environment. This process is repeated for
the function main, after which the program is fully compiled.

As the figure illustrates, different parsing and expansion pro-
cesses are interleaved in the expansion of a program, and they are
all interrelated. A programmer who is extending ZL with new syn-
tactic forms, however, need not imagine it all at once. ZL sup-
ports simple pattern-based macros and Parsing Expression Gram-
mar (PEG) [19] based lexical extensions for simple cases. For more
sophisticated extensions, ZL supports procedural macros. Finally,

for the most sophisticated extensions such as implementing a class
system, programmers must understand the details of ZL’s model of
lexical scope and reparsing. We take each of these layers in turn in
the following sections.

3. Pattern-Based Macros and Lexical Extensions
A pattern-based macro is the most familiar kind of syntactic exten-
sion: it is simply a transformation of one piece of syntax to another.
Since the expander is a fixed-point algorithm, macros can expand
to other macros.

The simplest macros in ZL define new syntactic forms that take
the shape of function calls. For example, consider an or macro that
behaves like C’s || operator, but instead of returning true or false,
returns the first non-zero value. Thus, or(0.0, 6.8) returns 6.8.
To define it, one uses ZL’s macro form, which declares a pattern-
based macro:

macro or(x, y) { ({typeof(x) t = x; t ? t : y;}); }

In ZL, as in GCC, the ({...}) is a statement expression whose
value is the result of the last expression, and typeof(x) gets
the type of a variable. Like Scheme macros [14], ZL macros are
hygienic, which means that they respect lexical scope. For example,

the t used in or(0.0, t) and the t introduced by the or macro
remain separate, even though they have the same symbol name.

The or macro above has two positional parameters. Macros can
also have keyword parameters and default values. For example:

macro sort(list, :compar = strcmp) {...}

defines the macro sort, which takes the keyword argument
compar, with a default value of strcmp. A call to sort will look
something like sort(list, :compar = mycmp).

As another example, consider a macro that iterates over an STL-
like container. Assuming an object con that contains integers, a use
of foreach to print its contents is:

foreach(x, con, {printf("%d\n", x);});

The macro defining foreach is:

macro foreach (VAR, WHAT, BODY) {
typeof(WHAT) & what = WHAT;
typeof(what.begin()) i=what.begin(), e=what.end();
for (; i != e; ++i) {

typeof(*i) & VAR = *i;
BODY;

}
}

Notice how the foreach macro creates a new binding (x in the
above example) that is visible in BODY.

3.1 Extending the Parser
The syntax of the foreach macro above is a bit ugly. It would be
nice if we could instead write something like:

foreach (x in con) printf("%d\n", x);

which does not have the shape of a function call. ZL lets us do this
by modifying1 the STMT production in the grammar for the parser
(from raw text to syntax objects) to recognize the new form:

<foreach> "foreach" "(" {ID} "in" {EXP} ")" {STMT}

In this grammar, anything between {} becomes a sub-part of the
syntax object that is named between the <>. We must pair this
modification with a macro for the new syntax form. The definition
of the new foreach macro is identical to the function-call one
except that smacro is used instead to declare that the macro works
with a syntax object produced by the parser.

Support for both styles of macros (function call and syntax) is
important, because not every macro warrants support in the parser.
For example, since the or macro from Section 3 has limited use-
fulness, it probably does not warrant adding a new operator. Fur-
thermore, function-call macros are typically sufficient in generating
boilerplate code. In contrast, new general-purpose forms typically
merit a parser extension.

3.2 The Parser
The ZL grammar is specified through a PEG [19], but with a few
extensions to the usual PEG notation, and a Packrat [18] parser is
used to convert strings of characters to syntax objects. A simplified
version of ZL’s initial grammar is shown in Figure 2. For readers
not familiar with PEGs, the two most important things to note are
that PEGs work with characters rather than tokens, and the / op-
erator defines a prioritized choice. A prioritized choice is similar
to the | operator used in Backus-Naur Form, except that it uncon-
ditionally uses the first successful match. For example, given the
rule “A = ’a’ / ’ab’” the string ab will never match because
the first choice is always taken. The PEG specification more closely

1 More modular lexical extensions that do not requiring modifying the full
grammar is future work. (See Section 9.)

TOP = <top> SPACING {STMT}+;

STMT = <<mid PARM>> {MID} ";"
/ <if> "if" "(" {EXP} ")" {STMT} ("else" {STMT})?
/ <while> "while" "(" {EXP} ")" {STMT}
/ <break> "break" ";"
/ <return> "return" {EXP} ";"
/ {BLOCK}
other statements ...
/ <stmt> ({TOKEN_}+ {PAREN} {BRACE} / {TOKEN}+ ";");

EXP = <exp> {TOKEN}+;

BLOCK = <block> "{" {STMT}* "}";

TOKEN_ = <<mid PARM>> {MID} / {BRACK} / {CONST} /
{ID} / {SYM};

TOKEN = TOKEN_ / PAREN;

PAREN = <()> "(" {RAW_TOKEN*} ")";
BRACE = <{}> "{" {RAW_TOKEN*} "}";
BRACK = <[]> "[" {RAW_TOKEN*} "]";

CONST = <f> ... / <l> ... / # float, numeric literal
<s> ... / <c> ... # string, character

ID = <<mid>> {MID} / {[@$\a_][\a_\d]*} SPACING;

SYM = {’...’ / ’==’ / ’+’ / ...} SPACING;

RAW_TOKEN = STRING / CHAR / SYM / BRACE / PAREN /
BRACK / COMMENT / [^\)\]\}];

STRING = ’"’ (’\\’_/[^"])+ ’"’ SPACING;
CHAR = ’\’’ (’\\’_/[^’])+ ’\’’ SPACING;

SPACING = [\s]* COMMENT?;

COMMENT = ...;

Figure 2. Simplified PEG grammar.

resembles regular expression syntax (as used in grep) than it does
Backus-Naur Form. The (), [], ?, *, +, and _ (otherwise known
as .) operators are all used in the same manner as they are in reg-
ular expressions. Anything between single quotes is a literal string.
The double quote is like the single quote, except that special rules
make them behave similarly to tokens. For example, "for" will
match the for in for(, but it won’t match the prefix of foreach.
The {} and <> are extensions to the standard PEG syntax and are
used for constructing syntax objects in the obvious ways. The spe-
cial <<mid>> operator and MID production are explained later in
Section 6.2.

A nice property of PEGs is that the associated Packrat parser
uses memoization to guarantee linear performance [19]. This mem-
oization is also used to avoid quadratic parsing times with ZL’s fre-
quent reparsing of strings. For example, when parsing (x*(y+z))
as ("()" "x*(y+z)"), the PAREN production is used on (y+z),
since ZL must recognize the grouping. When ("()" "x*(y+z)")
is expanded, the same PAREN production is used. Therefore, by
keeping the memoization table for the PAREN production after the
initial parse, there will be no need to reparse (y+z).

3.3 Built-in Macros
The grammar serves to separate individual statements and declara-
tions, and to recognize forms that are convenient to recognize using
a Packrat parser. As such, it creates syntax objects that need addi-
tional processing before they can be compiled into an AST. The

1 Syntax * or(Syntax * p, Environ *) {
2 Match * m = match(NULL, syntax (_, x, y), p);
3 return replace(syntax
4 {({typeof(x) t = x; t ? t : y;});},
5 m, new_mark());
6 }
7 make_macro or;

Figure 3. Procedural macro version of the or macro from
Section 3.

1 Syntax * foreach (Syntax * syn, Environ * env) {
2 Mark * mark = new_mark();
3 Match * m = match_args(0, syntax(VAR,WHAT,BODY), syn);
4 Syntax * what = match_var(m, syntax WHAT);
5 if (!symbol_exists(syntax begin, what, mark, env) ||
6 !symbol_exists(syntax end, what, mark, env))
7 return error(what,
8 "Container lacks begin or end method.");
9 UnmarkedSyntax * repl = syntax {

10 typeof(WHAT) & what = WHAT;
11 typeof(what.begin()) i=what.begin(), e=what.end();
12 for (;i != e; ++i) {typeof(*i) & VAR = *i; BODY;}
13 };
14 return replace(repl, m, mark);
15 }
16 make_syntax_macro foreach;

Figure 4. Version of foreach that returns a helpful error message
if the container does not contain the begin or end methods.

expander has several built-in macros for this purpose: stmt, exp,
(), [], and {}.

The stmt macro recognizes declarations and expressions. It
first tries the declarations expander, which is a handwritten parser
designed to deal with C’s idiosyncratic syntax for declarations. If
the declarations expander fails, then the expression expander is
tried, which is an operator-precedence parser [17]. The exp macro
is like the stmt macro, but only the expression expander is tried.

The macros (), [], and {} are used for reparsing strings. The
() and [] macros reparse the string as an expression using the EXP
production in the grammar, where as the {} generally reparses the
string as a block using the BLOCK production.

4. Procedural Macros
So far, we have shown only pattern-based macros that simply rear-
range syntax. Some macros, however, must take action based on the
input. Examples include providing better error messages (as in Fig-
ure 4) or performing some sort of action based on the value of one
of the parameters (as will be used in the example of Section 5). For
these situations, ZL provides procedural macros, which are func-
tions that take a syntax object and an environment and return a
transformed syntax object.

Figure 3 demonstrates the essential parts of any procedural
macro. The macro is defined as a function that takes a syntax object
and environment, and returns a transformed syntax object. Syntax
is created using the syntax form. The match function is used to
decompose the input while the replace function is used to rebuild
the output. Finally, make_macro is used to create a macro from a
function. More interesting macros use additional API functions to
take action based on the input; for example, the foreach macro
in Figure 4 uses error (line 7) to return an error if the container
lacks the proper methods. Figures 5 and 6 define the key parts of
the macro API, which we describe in the rest of this section and the
next section.

Types: UnmarkedSyntax, Syntax, Match, and Mark

Syntax forms:
new_mark() — returns Mark *
syntax (...)|{...}|ID — returns UnmarkedSyntax *
raw_syntax (...) — returns UnmarkedSyntax *
make_syntax_macro ID [ID];
make_macro ID [ID];

Callback functions:
Match * match(Match * prev,

UnmarkedSyntax * pattern, Syntax * with)

Match * match_args(Match * prev,

UnmarkedSyntax * pattern, Syntax * with)

Syntax * match_var(Match *, UnmarkedSyntax * var);

Syntax * replace(UnmarkedSyntax *, Match *, Mark *)

Figure 5. Core Macro API (described in Section 4.1).

4.1 Core API
Syntax is created using the syntax and raw_syntax forms. The
different forms create different types of code fragments. In most
cases, the syntax {...} form can be used, such as when a code
fragment is part of the resulting expansion; the braces will not be in
the resulting syntax. If an explicit list is needed, for example, when
passed to match as in Figure 3 (line 2), then the syntax (...)
form should be used (in which the commas are part of the syntax
used to create the list). Neither of these forms create syntax directly,
however; for example, syntax {x + y;} is first parsed as ("{}"
"x + y;") before eventually becoming (plus x y). When it is
necessary to create syntax directly, the syntax ID form can be
used for simple identifiers. For more complicated fragments the
raw_syntax form can be used in which the syntax is given in S-
expression form.

The match function decomposes the input. It matches pattern
variables (the second parameter) with the arguments of the macro
(the third parameter). If it is successful, it prepends the results
to prev (the first parameter) and returns the new list. If prev is
NULL, then it is treated as an empty list. In the match pattern a
_ can be used to mean “don’t care.” The match is done from the
first part of the syntax object. That is, given (plus x y), the first
match is plus. Since the first part is generally not relevant, ZL
provides match_args, which is like match except that the first
part is ignored. For example, match_args could have been used
instead of match in Figure 3.

The replace function is used to rebuild the output. It takes
a syntax object (the first parameter, and generally created with
syntax), replaces the pattern variables inside it with the values
stored in the Match object (the second parameter), and returns a
new Syntax object.

The final argument to replace is the mark, which is used to
implement hygiene. A mark captures the lexical context at the
point where it is created. Syntax objects created with syntax do
not have any lexical information associated with them, and are
thus unmarked (represented with the type UnmarkedSyntax). It
is therefore necessary for replace to attach lexical information to
the syntax object by using the mark created with the new_mark
primitive (the third parameter to replace).

Match variables exist only inside the Match object. When it is
necessary to access them directly, as done in lines 5 and 6 of Figure
4, match_var can be used; it returns the variable as a Syntax
object, or NULL if the match variable does not exist.

Once the function for a procedural macro is defined, it is
necessary to declare it as a macro using one of make_macro

bool symbol_exists(UnmarkedSyntax * symbol,

Syntax * where, Mark *, Environ *)

Syntax * error(Syntax *, const char *, ...)

size_t ct_value(Syntax *, Environ *)

Syntax * partly_expand(Syntax *, Position pos,

Environ *)

Context * get_context(Syntax *)

Syntax * replace_context(UnmarkedSyntax *, Context *)

UnmarkedSyntax * string_to_syntax(const char * str)

Environ * temp_environ(Environ *)

Syntax * pre_parse(Syntax *, Environ *)

Figure 6. Additional Macro API Functions (described in Sections
4.2–4.4).

or make_syntax_macro. The first creates a function-call macro,
while the second creates a syntax macro.

4.2 Beyond Match and Replace
The foreach macro in Figure 4 uses symbol_exists (lines 5 and
6) to check if the begin and end symbols exist in the container
type. The symbol name is passed in as the first argument and the
container as the second. If the second argument is NULL then the
current environment will be checked instead. The third argument
provides the context in which to look up the current symbol, and
finally the last argument is the environment to use.

If the symbol is not found, the foreach macro uses error (line
7) to return an error. The error function creates a syntax object that
will result in a syntax error when it is parsed. The first argument is
used to determine the location where the error will be reported; the
location associated with this syntax object is used as the location of
the error.

The expansion of foreach depends on whether a symbol is
present in its input. Often, expansion depends instead on the
compile-time value of an expression in the input. The ct_value
function takes a syntax object, expands the expression, parses the
expansion, and evaluates the parsed expression as an integer to de-
termine its value.

Also, the foreach macro did not need to decompose the syn-
tax for the container passed in. If decomposition were necessary,
the syntax object (representing the container) would need to be ex-
panded first because, at the point the macro was called, the con-
tainer is likely still represented as a generic exp, which is just a
list of tokens. For example, if the container were the identifier c,
the syntax object for the container would be (exp c) instead of
(id c). The partly_expand function partly expands a syntax
object to allow further decomposition. The pos parameter tells ZL
what position the syntax object is in; common values are TopLevel
for declarations, StmtPos for statements, and ExpPos for expres-
sions.

4.3 Controlling Visibility
Often it is necessary to bend normal hygiene rules. For this
ZL provides two different mechanisms: the get_context and
replace_context macro API functions and the fluid_binding
primitive.

Replacing Context. The get_context and replace_context
functions are used to bend hygiene in a very similar fashion to
datum->syntax-object in the syntax-case expander [13]. For
example, a macro defining a class needs to create a vtable that is ac-
cessible outside of the macro creating the class. The get_context
function gets the context from some symbol, generally some part of
the syntax object passed in, while replace_context replaces the
context of the symbol with the one provided. For example, code to

create a symbol _vtable that can be used later might look some-
thing like:

...
Match * m = match_args(0, raw_syntax (name ...), p);
Syntax * name = match_var(m, syntax name);
Context * context = get_context(name);
Syntax * _vtable = replace_context(syntax _vtable,

context);
...

Here name is the name of the class that is passed in as m. The name
symbol is extracted into a syntax object so that it can be used for
get_context. The replace_context function is then used to put
the symbol _vtable in the same context as name. Now _vtable
will have the same visibility as the name symbol, and thus be visible
outside the macro.

Fluid Binding. The get_context and replace_context func-
tions are one way to bend hygiene. The other is to use
fluid_binding, which allows a variable to take its meaning from
the use site of a macro rather than the macros’s definition site, in a
similar fashion to define-syntax-parameter in Racket [16, 7].

A prime example of the need for fluid_binding is the special
variable this in classes. Variables in ZL are lexically scoped. For
example, the code:

int g(X *);
int f() {return g(this);}
int main() {X * this = ...; return f();}

will not compile because the this defined in main is not visible
in f, even though f is called inside main. Normal hygiene rules
preserve lexical scope in a similar fashion, such that:

int g(X *);
macro m() {g(this);}
int main() {X * this = ...; return m();}

will also not compile. Attempts to make this work with get_
and replace_context will not compose well [7]. What is really
needed is for this to be scoped based on where it is used when
expanded, rather than where it is written in the macro definition.
This can be done by marking the this symbol as fluid using
fluid_binding at the top level and then using fluid when defin-
ing the symbol in local scope. For example:

fluid_binding this;
int g(X *);
macro m() {g(this);}
int main() {X * fluid this = ...; return m();}

will work as expected. That is, the this in m will bind to the this
in main.

4.4 Other API Functions
When it is necessary to create syntax on the fly the
string_to_syntax function can be used. Its usage and the usage
of the temp_environ and pre_parse functions are demonstrated
in the example presented in the next section.

5. An Extended Example
To get a better idea of how procedural macros work, this section
gives the code of a macro that fixes the size of a class. Fixing the
size of a class is useful because changing the size often breaks bi-
nary compatibility, which forces code using that class to be recom-
piled. Additional examples of how ZL can be used to mitigate the
problem of binary compatibility are given in our previous work [4].

The macro to fix the size of the class is shown in Figure 7.
To support this macro the grammar has been enhanced to support
fixing the size. The syntax for the new class form is:

1 Syntax * parse_myclass(Syntax * p, Environ * env) {
2 Mark * mark = new_mark();
3 Match * m = match_args
4 (0, raw_syntax(name @ (pattern ({...} @body))
5 :(fix_size fix_size) @rest), p);
6 Syntax * body = match_var(m, syntax body);
7 Syntax * fix_size_s = match_var(m, syntax fix_size);
8

9 if (!body || !fix_size_s) return parse_class(p, env);
10

11 size_t fix_size = ct_value(fix_size_s, env);
12

13 m = match(m, syntax dummy_decl,
14 replace(syntax {char dummy;}, NULL, mark));
15 Syntax * tmp_class = replace(raw_syntax
16 (class name ({...} @body dummy_decl) @rest),
17 m, mark);
18 Environ * lenv = temp_environ(env);
19 pre_parse(tmp_class, lenv);
20 size_t size = ct_value
21 (replace(syntax(offsetof(name, dummy)), m, mark),
22 lenv);
23

24 if (size == fix_size)
25 return replace(raw_syntax
26 (class name ({...} @body) @rest),
27 m, mark);
28 else if (size < fix_size) {
29 char buf[32];
30 snprintf(buf, 32, "{char d[%u];}", fix_size - size);
31 m = match(m, syntax buf,
32 replace(string_to_syntax(buf), NULL, mark));
33 return replace(raw_syntax
34 (class name ({...} @body buf) @rest),
35 m, mark);
36 } else
37 return error(p,"Size of class larger than fix_size");
38 }
39 make_syntax_macro class parse_myclass;

Figure 7. Macro to fix the size of a class. All ... in this figure are
literal.

class C : fix_size(20) { ... };

which will allow a macro to fix the size of the class C to 20 bytes.
The enhancement involved modifying the CLASS production to
support the fix_size construct. A simplified version of the new
production is as follows:

CLASS = <class> "class" {ID/}
(:<fix_size> ":" "fix_size" "(" {EXP} ")")
{<{...}> "{" {STMT}* "}" }?;

Most of the syntax is already described in Section 3.2. The only
new thing is :<>, which constructs a property to be added to the
parent syntax object, which in this case is class. The {...} (in
which the ... are literal) is the name of the syntax object for the
class body.

The macro in Figure 7 redefines the built-in class macro. It
works by parsing the class declaration and taking its size. If the size
is smaller than the required size, an array of characters is added to
the end of the class to make it the required size.

The details are as follows. Lines 2–7 decompose the class syn-
tax object to extract the relevant parts of the class declaration. A
@ by itself in a pattern makes the parts afterward optional. The
pattern form matches the sub-parts of a syntax object; the first
part of the object (the {...} in this case) is a literal2 to match

2 ZL matches literals symbolically (i.e., not based on lexical context).
Matching sensitive to lexical context is future work.

against, and the other parts of the object are pattern variables. A
@ followed by an identifier matches any remaining parameters and
stores them in a syntax list; thus, body contains a list of the decla-
rations for the class. Finally, :(fix_size fix_size) matches an
optional keyword argument; the first fix_size is the keyword to
match, and the second fix_size is a pattern variable to hold the
matched argument.

If the class does not have a body (i.e., a forward declaration) or a
declared fix_size, then the class is passed on to the original class
macro in line 9. Line 11 compiles the fix_size syntax object to
get an integer value.

Lines 13–22 involve finding the original size of the class. Due to
alignment issues the sizeof operator cannot be used, since a class
such as “class D {int x; char c;}” has a packed size of 5
on most 32 bit architectures, but sizeof(D) will return 8. Thus,
to get the packed size a dummy member is added to the class. For
example, the class D will become “class D {int x; char c;
char dummy;}” and then the offset of the dummy member with
respect to the class D is taken. This new class is created in lines
13–17. Here, the @ before the identifier in the replacement template
splices in the values of the syntax list.

To take the offset of the dummy member of the temporary class,
it is necessary to parse the class and get it into an environment.
However, we do not want to affect the outside environment with
the temporary class. Thus, a new temporary environment is created
in line 18 using the temp_environ macro API function. Line 19
then parses the new class and adds it to the temporary environment.
The pre_parse API function partly expands the passed-in syntax
object and then parses just enough of the result to get basic infor-
mation about symbols.

With the temporary class now parsed, lines 20–22 get the size
of the class using the offsetof primitive.

Lines 24–37 then act based on the size of the class. If the size
is the same as the desired size, there is nothing to do and the
class is reconstructed without the fix_size property (lines 24–
27). If the class size is smaller than the desired size, then the class
is reconstructed with an array of characters at the end to get the
desired size (lines 28–35). (The string_to_syntax API function
simply converts a string to a syntax object.) Finally, an error is
returned if the class size is larger than the desired size (lines 36–
37).

The last line declares the function parse_myclass as a syntax
macro for the class syntax form.

6. Macro Implementation
This section describes the implementation of ZL’s macro system.
We first describe the basic macro-expansion algorithm without the
reparsing steps to focus on the hygiene system. For simplicity,
we first assume that macro parameters and syntax forms are fully
parsed. The next subsection explains the details.

6.1 Basic Expander and Hygiene System
ZL’s hygiene system is similar to the syntax-case system [14].
However, the data structures are different. A mark holds a lexical
environment, and marks are applied during replace rather than
to the input and result of a macro transformer. Special lookup
rules search mark environments in lieu of maintaining a list of
substitutions.

The Idea. During parsing, ZL maintains an environment that
maps from one type of symbol to another. Symbols in the envi-
ronment’s domain correspond to symbols in syntax objects, while
each symbol in the environment’s range is generated to represent
a particular binding. Symbols in syntax objects (and hence the en-
vironment domain) have a set of marks associated with them. The

float r = 1.61803399;

Syntax * make_golden(Syntax * syn, Environ * env) {
Mark * mark = new_mark();
Match * m = match_args(0, syntax (A,B,ADJ,FIX), syn);
UnmarkedSyntax * r = syntax {

for (;;) { float a = A, b = B;
float ADJ = (a - r*b)/(1 + r);
if (fabs(ADJ/(a+b)) > 0.01) FIX;
else break; }

};
return replace(r, m, mark);

}
make_macro make_golden;

int main() {
float q = 3, r = 2;
make_golden(q, r, a, {q -= a; r += a;});

}

Figure 8. Example code to illustrate how hygiene is maintained.
The make_golden macro will test if A and B are within 1% of the
golden ratio. If not, it will execute the code in FIX to try to fix the
ratio (where the required adjustment will be stored in ADJ) and then
try again until the golden ratio condition is satisfied.

set of marks are considered part of the symbol’s identity. A mark is
created with the new_mark primitive and applied to symbols during
the replacement process. During this process, each symbol is either
replaced, if it is a macro parameter, or marked. A mark also has an
environment associated with it, which is the global environment at
the site of the new_mark call.

When looking up a binding, the current environment is first
checked. If a symbol with the same set of marks is not found in
the current environment, then the outermost mark is stripped and
the symbol is looked up in the environment associated with the
stripped mark. This process continues until no more marks are left.

An Illustrative Example. To better understand this process,
consider the code in Figure 8. When the first binding form
“float r = ...” is parsed, r is bound to the unique symbol $r0,
and the mapping r => $r0 is added to the current environment.
When the function make_golden is parsed, it is added to the en-
vironment. When the new_mark() primitive is parsed inside the
body of the function, the current global environment is remem-
bered. The new_mark() primitive does not capture local variables,
since it makes little sense to use them in the result of the macro.
Next, “make_macro make_golden” is parsed, which makes the
function make_golden into a macro.

Now the body of main is parsed. A new local environment
is created. When “float q = 3, r = 2” is parsed, two unique
symbols $q0 and $r1 are created and corresponding mappings are
added to the local environment. At this point, we have:

float $r0 = 1.61803399;
[make_golden => ..., r => $r0]
int main () {

float $q0 = 3, $r1 = 2;
[r => $r1, q => $q0, make_golden => ..., r => $r0]
make_golden(q, r, a, {q -= a; r += a;});

}

The expanded output is represented in this section as pseudo-syntax
that is like the input language of ZL with some additional anno-
tations. Variables starting with $ represent bound symbols. The
[...] list represents the current environment in which new binding
forms are added to the front of the list.

Now, make_golden is expanded and, in the body of main, we
have:

...
[r => $r1, q => $q0, make_golden => ..., r => $r0]
for (;;) { float a’0 = q, b’0 = r;

float a = (a’0 - r’0*b’0)/(1 + r’0);
if (fabs(a/(a’0+b’0)) > 0.01)

{q -= a; r += a;}
else break; }

’0 => [r => $r0]

where ’0 represents a mark and ’0 => [...] is the environment
for the mark. Notice how marks keep the duplicate a and r’s in the
expanded output distinct.

Now, the statement “float a’0 = q, b’0 = r” is compiled.
Compiling the first part creates a unique symbol $a0 and the map-
ping a’0 => $a0 is added to the new environment inside the for
loop. The variable q on the right-hand-side resolves to the $q0
symbol in the local environment. A similar process is performed
for the second part. We now have:

...
for (;;) { float $a0 = $q0, $b0 = $r1;

[b’0 => $b0, a’0 => $a0, r => $r1,
q => $q0, ...]

float a = (a’0 - r’0*b’0)/(1 + r’0);
...}

’0 => [r => $r0]

Next, the statement “float a = ...” is compiled. A unique
symbol $a1 is created for a and the associated mapping is added
to the local environment. Then the right-hand-side expression must
be compiled. The variables a’0 and b’0 resolve to $a0 and $b0,
respectively, since they are found in the local environment. How-
ever, r’0 is not found, so the mark ’0 is stripped, and r is looked
up in the environment for the ’0 mark and resolves to $r0. We now
have:

...
for (;;) { ...

float $a1 = ($a0 - $r0*$b0)/(1 + $r0);
[a => $a1, b’0 => $b0, a’0 => $a0,
r => $r1, q => $q0, ...]

if (fabs(a/(a’0+b’0)) > 0.01)
{q -= a; r += a;}

else break; }
’0 => [r => $r0]

Next, the if is compiled. The marks keep the two a variables
in the expression a/(a’0+b’0) distinct, and everything correctly
resolves. Thus, we finally have:

float $r0 = 1.61803399;
int main() {

float $q0 = 3, $r1 = 2;
for (;;) { float $a0 = $q0, $b0 = $r1;

float $a1 = ($a0 - $r0*$b0)/(1 + $r0);
if (fabs($a1/($a0+$b0)) > 0.01)

{$q0 -= $a1; $r1 += $a1;}
else break; }

}

Hence, all symbols are correctly bound and hygiene is main-
tained.

Multiple Marks. The symbols in the expansion of make_golden
only had a single mark applied to them. However, in some cases,
such as when macros expand to other macros, multiple marks are
needed. For example, multiple marks are needed in the expansion

macro mk_plus_n (NAME, N) {
macro NAME (X) { ({int x = X; x + N;}); }

}

static const int x = 10;
mk_plus_n(plus_10, x);

int main() {
int x = 20;
return plus_10(x);

}

Figure 9. Example code to show how hygiene is maintained when
a macro expands to another macro.

of plus_10 in Figure 9. In this figure, mk_plus_n expands to

macro plus_10 (X’0) { ({int x’0 = X’0; x’0 + x;}); }

where the first mark ’0 is applied. A second mark is then applied
in the expansion of plus_10(x) in main:

{ ({int x’0’1 = x; x’0’1 + x’1;}) }

In particular, a second mark is added to x’0, making it x’0’1.
This symbol then resolves to the x local to the macro plus_10. In
addition, x’1 resolves to the global x constant3 and the unmarked
x resolves to the x local to main. Thus, hygiene is maintained in
spite of three different x’s in the expansion.

Structure Fields. Normal hygiene rules will not have the desired
effect when accessing fields of a structure or class. Instead of trying
to look up a symbol in the current environment, we are asking to
look up a symbol within a specialized sub-environment.

For example, the following code won’t work with normal hy-
giene rules:

macro sum(q) {q.x + q.y;}
struct S {int x; int y;}
int f() {

struct S p;
...
return sum(p);

}

The problem is that sum(p) will not be able to access the fields of
p since it will expand to “p.x’0 + p.y’0” with marks on x and y.
The solution is to use a special lookup rule for structure fields. The
rule is that if the current symbol with its sets of marks is not found
in the structure, strip the outermost mark and try again, and repeat
the process until no more marks are left. This process is similar to
the normal lookup rule except that the sub-environment associated
with the mark is ignored since it is irrelevant. In the above example,
p.x’0 in the expansion of sum(p) will resolve to the structure field
x in struct S.

Replacing Context. The get_context and replace_context
functions (see Section 4.3) can be used to bend normal hy-
giene rules. A context is simply a collection of marks. Thus
get_context simply gets the marks associated with the syntax
object, while replace_context replaces the marks of a syntax
object. If a syntax object already has any marks associated with it,
they are ignored.

Fluid Binding. The fluid_binding form (see Section 4.3)
bends hygiene by allowing a variable to take its meaning from the

3 In pattern based macros there is an implicit call to new_mark at the point
where the macro was defined; hence, the ’1 mark captures the environ-
ment where mk_plus_10 (expanded from mk_plus_n) is defined, which
includes the global constant x.

use site rather than from the macros’s definition site. It changes the
scope of a marked variable from lexical to fluid and is used together
with the fluid keyword, which temporarily binds a new symbol to
the fluid variable for the current scope.

The fluid_binding form inserts a fluid-binding symbol into
the environment that serves as an instruction to perform the lookup
again. The symbol consists of the instruction and a unique symbol
name to perform the second lookup on; the name is constructed
by taking the symbol name and applying a fresh mark to it (with
an empty environment). For example, “fluid_binding this”
inserts the mapping this => fluid(this’0) into the en-
vironment, where the fluid-binding symbol is represented as
fluid(SYMBOL’MARK). The “fluid VAR” form then replaces the
variable VAR with the unique symbol name associated with the fluid
binding. This has the effect of rebinding the fluid_binding vari-
able to the current symbol for the current scope. For example,
“X * fluid this” becomes “X * this’0” and this’0 gets
temporarily bound to the local symbol $this0. Finally, when-
ever a symbol resolves to something that is a fluid binding the
symbol will be resolved again, this time using the unique symbol
name in the fluid binding. For example, this will first resolve to
fluid(this’0), which then resolves to $this0.

To see why this method works, consider the parsing of the
example from Section 4.3:

fluid_binding this;
int g(X *);
macro m() {g(this);}
int main() {X * fluid this = ...; return m();}

The fluid_binding form is first parsed and the mapping
this => fluid(this’0) is added to the environment where ’0
is an empty mark. The declaration for g and the macro m is also
parsed and we now have:

[m => ..., g => ..., this => fluid(this’0)]
int main() {X * fluid this = ...; return m();}

Now main is parsed. Because the this variable has the fluid
keyword, the symbol this is looked up in the environment and
“fluid this” becomes this’0 giving:

int main() {X * this’0 = ...; return m();}

The this’0 variable is then added to the environment and rest of
the body of main is expanded (which includes the expansion of m):

int main() {
[this’0 => $this0, ...]
return g(this’1);

}
’1 => [..., this => fluid(this’0)]

The body of main is now parsed. The variable this’1 (from the
expansion of m) first resolves to the fluid symbol fluid(this’0),
which temporarily becomes this’0 and then resolves to $this0.
The rest of main is also parsed giving:

int main() {return g($this0);}

Hence, the this variable in the macro m gets resolved to the
this variable in main as intended.

6.2 The Reparser
Supporting Scheme-style macros with C-like syntax turns out to be
a hard problem for two reasons. The primary reason, as mentioned
in Section 2, is that ZL does not initially know how to parse any part
of the syntax involved with macros. The other and less obvious rea-
son is that when given a syntax form such as “syntax (x * y)”,
ZL does not know if x and y are normal variables or pattern vari-
ables until the substitution is performed. If they are normal vari-
ables, then it will be parsed as (exp x * y), but if they are pattern

variables, it will be parsed as (exp (mid x) * (mid y)) where
mid (macro identifier) is just another name for a pattern variable.
ZL solves the former problem by delaying parsing as much as pos-
sible, which works nicely with ZL’s hygiene system by reducing
the complexity of macro explanation from quadratic to linear. ZL
solves the latter problem by installing special hooks into its Packrat
parser.

The Idea. As already established, the syntax () and
syntax {} forms create syntax objects with raw text that
cannot be parsed until ZL knows where the syntax object will
ultimately be used. Thus replace is unable to perform any
replacements. Instead, replace annotates the syntax object with
with a set of instructions to apply later that includes two bits of
information: (1) the mark to apply, and (2) the substitutions to
apply.

For example, given the code:

int x;
Syntax * plus_x(Syntax * syn, Environ * env) {

Match * m = match_args(0, syntax (y), syn);
return replace(syntax (x + y), m, new_mark());

}
make_macro plus_x;

the call plus_x(z) results in ("()" "x + y"){’0;
y => (parm "z")} where the {} represents the annotation
and parm is a built-in macro (see Section 3.3) to indicate the need
to reparse. The first part of the annotation is the mark and the
second is the substitution to apply. Thus the substitution is delayed
until ZL knows where the call to plus_x will be used.

Eventually, the annotated syntax object will need to be parsed,
which requires two steps. First the raw text needs to be parsed using
the Packrat parser. Second the instructions in the annotations need
to be applied.

Parsing the raw text creates a problem since ZL does not know
which identifiers are pattern variables. Solving this problem in-
volves a special hook into the Packrat parser, which is the purpose
of the special <<mid>> operator shown in the grammar (Figure 2).
The relevant bits of the grammar (with some extra required produc-
tions) are these:

EXP = <exp> {TOKEN}+;
TOKEN_ = <<mid PARM>> {MID} / {ID} / ...
MID = {[@$\a_][\a_\d]*} SPACING;
PARM = {STMT} EOF / {TOKEN} EOF / {EXP} EOF;

The <<mid>> operator is a special operator that matches only if
the identifier being parsed is in the substitution list. When a MID
matches, and the pattern variable is of the type that needs to be
reparsed (i.e., matched with a syntax form), the parser adds a
note as to how to reparse the macro parameter. This is either the
production where it matches or the production as given in the
<<mid>> instruction. For example, when parsing

("()" "x + y"){’0; y => (parm "z")}

as an expression, the parser is able to recognize x as an identifier
and y as a mid. During the parsing of x the MID production is tried
but it is rejected because x is not a pattern variable, yet when y is
tried, it matches the MID production since y is a pattern variable.
Thus the result of the parse is:

(exp x + (mid y PARM)){’0; y => (parm "z")}

After the raw text is parsed, the instructions in the annotation are
applied to the sub-parts; if the syntax object represents raw text then
the instructions are simply pushed down rather than being directly
applied. In the above example this process will result in:

(exp’0 x’0 +’0 z)

That is, marks are applied and (mid y PARM) becomes z. During
the substitution, the string z is reparsed using the PARM production
noted in the second argument of mid. Hence, the string z becomes
the identifier z.

The results of the reparse are then expanded and parsed as
before. Marks are used as described in Section 6.1, but with the
additional rule that if no marks are left and a symbol is still not
found then it is assumed to be associated with a primitive form. For
example, exp’0 is assumed to represent the built in exp macro,
since exp is not in the current environment. Since the result is an
exp, it will be expanded again to become

(plus x’0 z)

which will then be converted into an AST.

Additional Examples. In the previous example, the result of the
reparse is a fully parsed string, but this is not always the case. For
example, if the macro plus_x were instead plus_2x, and the call
plus_2x(z) expanded to:

("()" "2*x + y"){’0; y => (parm "z")}

the result will first parse to:

(exp ("()" "2*x") + y){’0; y => (parm "z")}

with "2*x" left unparsed. Applying the annotations will then result
in:

(exp’0 ("()" "2*x"){’0; y => (parm "z")} + z)

That is, since the "()" syntax objects represents raw text, the in-
structions are pushed down on that object rather than being directly
applied.

Also, in the same example, the macro parameter was just an
identifier and the special PARM production is not needed, as it
would be correctly parsed as a TOKEN. However, this is not al-
ways the case. For example, if the call to plus_x were instead
plus_x(z + 2) the string “z + 2” would need to be parsed as
a PARM since it is not a token.

Matching and Replacing with the raw syntax Form. As the
lazy substitutions of macro parameters and the reparsing are cou-
pled, lazy substitution only applies to syntax forms that are to
be reparsed, such as the () and {} forms. Syntax created with
raw_syntax is fully parsed, and thus replace performs the sub-
stitutions eagerly.

7. Implementation Status
ZL is a C++-compatible language that provides a C-like core and
leaves most of the higher level C++ features to be defined via the
macro system. In particular, most of the class implementation in
ZL is left to macros. However, since classes are an integral part
of the C++ type system, ZL still needs to have some notion of
what a class is. Thus, in addition to supporting basic C constructs
and macros, ZL also provides user types, which are ZL’s minimal
notion of classes. The details of user types and ZL’s implementation
of classes are explored in our previous work [4].

The current ZL prototype supports most of C and parts of C++.
For C, the only major feature not supported is bitfields, mainly be-
cause the need has not arisen. For C++, we support classes with sin-
gle inheritance, but currently do not support multiple inheritance,
exceptions, or templates.

As ZL is at present only a prototype compiler, the overall com-
pile time when compared to compiling with GCC 4.4 is 2 to 3 times
slower. However, ZL is designed to have little to no impact on the
resulting code. ZL’s macro system imposes no run-time overhead.

The ZL compiler transforms higher-level ZL into a low-level
S-expression-like language that can best be described as C with

Scheme syntax. Syntactically, the output is very similar to fully
expanded ZL as shown in Figure 1. The transformed code is then
passed to a modified version of GCC 4.4. When pure C is passed in
we are very careful to avoid any transformations that might affect
performance. The class macro currently implements C++ classes
in a way that is comparable to a traditional compiler’s implementa-
tion, and hence should have no impact on performance.4

8. Related Work
ZL’s design philosophy is closely related to Scheme’s [26] design
philosophy of providing a small core language and letting every-
thing else be defined as macros. Parts of ZL were previously de-
scribed in our earlier paper [4]. However, the focus of that paper
was on how ZL can be used for to mitigate ABI compatibility prob-
lems. More details of ZL and the ABI compatibility problem is also
the topic of the first author’s dissertation [3].

Other Macro Systems. There are numerous other macro systems
for various languages, but apart from Scheme, few have the goal
of allowing a large part of the language to be defined via macros.
As such, they are either a macro system built on top of an existing
language, or they lack procedural macros for general compile-time
programming.

Maya [6] is a powerful macro system for Java. Maya macros
(known as Mayans) support lexical extensions by extending Java’s
LALR(1) grammar. Like ZL’s macros, Mayans are procedural and
hygienic. Unlike the current version of ZL, Mayans are modular;
however, since they extend the LALR(1) grammar, conflicts may
well arise when combining them. OpenJava [27] and ELIDE [11]
are similar to Maya but less advanced. Neither of these systems
support hygiene, and they do not support general syntax extensions.

A procedural and hygienic macro system based on the Ear-
ley [15] parser is described in Kolbly’s dissertation [22]. His sys-
tem is similar to Maya in that macro expansion is part of the parsing
process, yet more powerful as the Earley parser can handle arbitrary
grammars rather than just the LALR(1) subset. His macro system
is also used in the RScheme [1] dialect of Scheme.

Fortress [2] is a new language with hygienic macro support
and the ability to extend the syntax of the language. Like ZL, it
uses a Packrat parser to support lexical extensions. In addition and
unlike the current version of ZL, the lexical extensions are modular
and thus can be combined. Fortress macros support recursive and
mutually recursive definitions unlike some other macro systems.
However, macros cannot expand to other macros, and they are not
procedural.

The Dylan [25] language has support for hygienic macros. How-
ever, unlike ZL, one cannot really extend the grammar as macros
are required to take one of three fixed forms: def, stmt, and fun
call macros. The JSE system [5] is a version of Dylan macros
adapted to Java.

MS2 [29] is an older, more powerful macro system for C. It
essentially is a Lisp defmacro system for C. It offers powerful
macros since they are procedural, but like Lisp’s defmacro lacks
hygiene. In addition, like Dylan but unlike ZL, macros are required
to take one of several fixed forms; no mechanism for general syn-
tactic extensions is provided.

The <bigwig> [9] language support pattern-based macros and
lexical extension. However, and unlike ZL, its macros are limited
in power because recursion is explicitly forbidden. By limiting the
power of the macro system <bigwig> can support type safety and
termination of the macro-expansion process.

4 We verified that run-time performance was the same by compiling several
real world programs with both ZL and GCC 4.4. More details of this process
are given in our previous work [4].

MacroML [20] has similar aims to <bigwig> in that it limits
what macros can do to ensure safety. While MacroML supports re-
cursion, it does not support lexical extensions. In addition, macros
are not allowed to inspect or take apart code. However, these re-
strictions allow macros to be statically typed. This guarantees that
macro definitions are well formed and thus always produce valid
code.

Extensible Compilers. Macros are one approach to providing an
extensible compiler, but a more traditional approach is to provide
an API to directly manipulate the compiler’s internals, such as the
AST. On the surface this approach may seem more powerful than
a macro system, but we believe a macro system can be equally
powerful with the right hooks into the compiler.

Xoc [12] is an extensible compiler that supports grammar exten-
sions by using GLR (Generalized Left-to-right Rightmost deriva-
tion) parsing techniques. Xoc’s primary focus is on implementing
new features via many little extensions, otherwise known as plu-
gins. This approach has an advantage over most other extensible
compilers in that the extensions to be loaded can be tailored for
each source file. As such, Xoc provides functionality similar to that
of traditional macro systems.

METABORG [10] is a method for embedding domain-specific
languages in a host language. It does this by transforming the em-
bedded language to the host language using the Stratego/XT [28]
toolset. Stratego/XT supports grammar modifications using GLR
parsing techniques.

Polyglot [24] is a compiler front-end framework for building
Java language extensions; however, since it uses an LALR parser,
extensions do not compose well. JTS [8], is a framework for writing
Java preprocessor with the focus on creating domain-specific lan-
guages. Stratego/XT [28] is a compiler framework whose primary
focus is on stand-alone program transformation systems; it also
supports grammar modifications using GLR parsing techniques.
CIL [23] focus in on C program analysis and transformation, and
as such, does not support grammar modifications.

9. Conclusion and Future Work
ZL is a C++-compatible language in which high-level constructs
are defined using macros over a C-like core language. The ZL
macro system is unique in that it offers the full power and safety of
Scheme’s hygienic macros while also handling C’s richer syntax.
We have described the design and implementation of ZL’s parser
and macro implementation with its novel parsing and expansion
strategy. While ZL macros are similar to Scheme’s in many ways,
C’s richer syntax presents unique challenges that have been solved
by ZL.

Future work includes supporting modular grammar extensions
so that it is no longer necessary to modify the grammar specifi-
cation file to support new lexical extensions. By using techniques
from the Rats! [21] parser, ZL will allow grammar modifications
to be scoped in a similar manner that variables and other identifiers
are. Currently, ZL macros are dynamically typed, where a type is
a grammar production. Another possibility is to support statically
typed macros in addition to dynamically typed ones. This will al-
low for better error reporting and the ability to compile macros into
templates for efficient expansion.

For the current implementation of ZL, see the ZL web page
available at http://www.cs.utah.edu/~kevina/zl/.

Acknowledgments
We thank Carl Eastlund, Eric Eide, Gary Lindstrom, Ryan Culpep-
per, and Jon Rafkind for feedback on various incarnations of this
paper. We also thank the anonymous reviewers for their corrections
and comments.

http://www.cs.utah.edu/~kevina/zl/

References
[1] RScheme web site. http://www.rscheme.org/rs/.

[2] Eric Allen, Ryan Culpepper, Janus Dam Nielsen, Jon Rafkind, and
Sukyoung Ryu. Growing a syntax. In Proc. Workshop on Foundations
of Object-Oriented Languages (FOOL), 2009.

[3] Kevin Atkinson. ABI Compatibility Through a Customizable
Language. PhD thesis, University of Utah, 2011. Expected.

[4] Kevin Atkinson, Matthew Flatt, and Gary Lindstrom. ABI com-
patibility through a customizable language. In Proc. Generative
Programming and Component Engineering (GPCE), pages 147–156,
Eindhoven, The Netherlands, 2010.

[5] Jonathan Bachrach and Keith Playford. The Java syntactic extender
(JSE). In Proc. OOPSLA, pages 31–42, Tampa Bay, FL, 2001.

[6] Jason Baker and Wilson C. Hsieh. Maya: multiple-dispatch syntax
extension in Java. In Proc. PLDI, pages 270–281, Berlin, Germany,
2002.

[7] Eli Barzilay, Ryan Culpepper, and Matthew Flatt. Keeping it clean
with syntax-parameterize. In Workshop on Scheme and Functional
Programming, Portland, OR, 2011.

[8] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for
implementing domain-specific languages. In Proc. Intl. Conf.
Software Reuse (ICSR), page 143, 1998.

[9] Claus Brabrand and Michael I. Schwartzbach. Growing languages
with metamorphic syntax macros. In Proc. Symposium on Partial
Evaluation and Semantics-based Program Manipulation (PEPM),
pages 31–40, Portland, OR, 2002.

[10] Martin Bravenboer and Eelco Visser. Concrete syntax for objects:
domain-specific language embedding and assimilation without
restrictions. In Proc. OOPSLA, pages 365–383, Vancouver, BC,
Canada, 2004.

[11] Avi Bryant, Andrew Catton, Kris De Volder, and Gail C. Murphy.
Explicit programming. In Proc. Conf. Aspect-Oriented Software
Development (AOSD), pages 10–18, Enschede, The Netherlands,
2002.

[12] Russ Cox, Tom Bergan, Austin T. Clements, Frans Kaashoek, and
Eddie Kohler. Xoc, an extension-oriented compiler for systems
programming. In Proc. Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 244–254,
Seattle, WA, 2008.

[13] R. Kent Dybvig. Syntactic abstraction: the syntax-case expander.
In Andy Oram and Greg Wilson, editors, Beautiful Code: Leading
Programmers Explain How They Think, chapter 25, pages 407–428.
O’Reilly and Associates, June 2007.

[14] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic

abstraction in Scheme. Lisp and Symbolic Computation, 5(4):295–
326, 1992.

[15] Jay Earley. An efficient context-free parsing algorithm. Commun.
ACM, 13(2):94–102, 1970.

[16] Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-
TR-2010-1, PLT Inc., 2010. http://racket-lang.org/tr1/.

[17] Robert W. Floyd. Syntactic analysis and operator precedence. J.
ACM, 10(3):316–333, 1963.

[18] Bryan Ford. Packrat parsing: Simple, powerful, lazy, linear time.
In Proc. Intl. Conf. Functional Programming (ICFP), pages 36–47,
Pittsburgh, PA, 2002.

[19] Bryan Ford. Parsing expression grammars: a recognition-based
syntactic foundation. In Proc. POPL, pages 111–122, Venice, Italy,
2004.

[20] Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage
computations: type-safe, generative, binding macros in macroml.
In Proc. Intl. Conf. Functional Programming (ICFP), pages 74–85,
Florence, Italy, 2001.

[21] Robert Grimm. Better extensibility through modular syntax. In Proc.
PLDI, pages 38–51, Ottawa, Ontario, 2006.

[22] Donovan Kolbly. Extensible Language Implementation. PhD thesis,
Univ. of Texas, Austin, 2002.

[23] George C. Necula, Scott McPeak, S. P. Rahul, and Westley Weimer.
CIL: Intermediate language and tools for analysis and transformation
of C programs. In Proc. Conf. Compiler Construction, pages 213–
228, 2002.

[24] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers.
Polyglot: An extensible compiler framework for java. In Proc. Conf.
Compiler Construction, pages 138–152, 2003.

[25] Andrew Shalit, David Moon, and Orca Starbuck. Dylan Reference
Manual. Addison-Wesley, 1996.

[26] Michael Sperber (Ed.). The revised6 report on the algorithmic
language Scheme, 2007.

[27] Michiaki Tatsubori, Shigeru Chiba, Kozo Itano, and Marc-Olivier
Killijian. OpenJava: A class-based macro system for Java. In Proc.
1st OOPSLA Workshop on Reflection and Software Engineering,
pages 117–133, London, UK, 2000.

[28] Eelco Visser. Program transformation with Stratego/XT. Rules,
strategies, tools, and systems in Stratego/XT 0.9. In Lengauer
et al., editor, Domain-Specific Program Generation, Lecture Notes in
Computer Science, pages 216–238. Spinger-Verlag, June 2004.

[29] Daniel Weise and Roger Crew. Programmable syntax macros. In
Proc. PLDI, pages 156–165, Albuquerque, NM, 1993.

http://www.rscheme.org/rs/
http://racket-lang.org/tr1/

	Introduction
	Parsing and Expanding
	Pattern-Based Macros and Lexical Extensions
	Extending the Parser
	The Parser
	Built-in Macros

	Procedural Macros
	Core API
	Beyond Match and Replace
	Controlling Visibility
	Other API Functions

	An Extended Example
	Macro Implementation
	Basic Expander and Hygiene System
	The Reparser

	Implementation Status
	Related Work
	Conclusion and Future Work

